its locking devices may not be adversely affected by the environmental conditions associated with the particular installation. (b) No self-locking nut may be used on any bolt subject to rotation in operation unless a nonfriction locking device is used in addition to the self-locking device. [Amdt. 29-5, 33 FR 14533, Sept. 27, 1968] #### § 29.609 Protection of structure. Each part of the structure must- - (a) Be suitably protected against deterioration or loss of strength in service due to any cause, including— - (1) Weathering; - (2) Corrosion; and - (3) Abrasion; and - (b) Have provisions for ventilation and drainage where necessary to prevent the accumulation of corrosive, flammable, or noxious fluids. ## § 29.610 Lightning and static electricity protection. - (a) The rotorcraft structure must be protected against catastrophic effects from lightning. - (b) For metallic components, compliance with paragraph (a) of this section may be shown by— - (1) Electrically bonding the components properly to the airframe; or - (2) Designing the components so that a strike will not endanger the rotor-craft. - (c) For nonmetallic components, compliance with paragraph (a) of this section may be shown by— - (1) Designing the components to minimize the effect of a strike; or - (2) Incorporating acceptable means of diverting the resulting electrical current to not endanger the rotorcraft. - (d) The electric bonding and protection against lightning and static electricity must— - (1) Minimize the accumulation of electrostatic charge; - (2) Minimize the risk of electric shock to crew, passengers, and service and maintenance personnel using normal precautions: - (3) Provide and electrical return path, under both normal and fault conditions, on rotorcraft having grounded electrical systems; and (4) Reduce to an acceptable level the effects of lightning and static electricity on the functioning of essential electrical and electronic equipment. [Amdt. 29–24, 49 FR 44437, Nov. 6, 1984; Amdt. 29–40, 61 FR 21907, May 10, 1996; 61 FR 33963, July 1, 1996] ### §29.611 Inspection provisions. There must be means to allow close examination of each part that requires— - (a) Recurring inspection; - (b) Adjustment for proper alignment and functioning; or - (c) Lubrication. # § 29.613 Material strength properties and design values. - (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on a statistical basis. - (b) Design values must be chosen to minimize the probability of structural failure due to material variability. Except as provided in paragraphs (d) and (e) of this section, compliance with this paragraph must be shown by selecting design values that assure material strength with the following probability— - (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component, 99 percent probability with 95 percent confidence; and - (2) For redundant structures, those in which the failure of individual elements would result in applied loads being safely distributed to other load-carrying members, 90 percent probability with 95 percent confidence. - (c) The strength, detail design, and fabrication of the structure must minimize the probability of disastrous fatigue failure, particularly at points of stress concentration. - (d) Design values may be those contained in the following publications (available from the Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120) or other values approved by the Administrator: - (1) MIL—HDBK-5, "Metallic Materials and Elements for Flight Vehicle Structure". ### § 29.619 - (2) MIL—HDBK-17, "Plastics for Flight Vehicles". - (3) ANC-18, "Design of Wood Aircraft Structures". - (4) MIL—HDBK-23, "Composite Construction for Flight Vehicles". - (e) Other design values may be used if a selection of the material is made in which a specimen of each individual item is tested before use and it is determined that the actual strength properties of that particular item will equal or exceed those used in design. (Secs. 313(a), 601, 603, 604, Federal Aviation Act of 1958 (49 U.S.C. 1354(a), 1421, 1423, 1424), sec. 6(c), Dept. of Transportation Act (49 U.S.C. 1655(c))) [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–17, 43 FR 50599, Oct. 30, 1978; Amdt. 27–26, 55 FR 8003, Mar. 6, 1990] ### §29.619 Special factors. - (a) The special factors prescribed in §§ 29.621 through 29.625 apply to each part of the structure whose strength is— - (1) Uncertain; - (2) Likely to deteriorate in service before normal replacement; or - (3) Subject to appreciable variability due to— - (i) Uncertainties in manufacturing processes; or - (ii) Uncertainties in inspection methods. - (b) For each part of the rotorcraft to which §§29.621 through 29.625 apply, the factor of safety prescribed in §29.303 must be multiplied by a special factor equal to— - (1) The applicable special factors prescribed in §§ 29.621 through 29.625; or - (2) Any other factor great enough to ensure that the probability of the part being understrength because of the uncertainties specified in paragraph (a) of this section is extremely remote. ### § 29.621 Casting factors. (a) General. The factors, tests, and inspections specified in paragraphs (b) and (c) of this section must be applied in addition to those necessary to establish foundry quality control. The inspections must meet approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except castings that are pressure tested as parts of hydraulic or other fluid sys- tems and do not support structural loads. - (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d) of this section— - (1) Need not exceed 1.25 with respect to bearing stresses regardless of the method of inspection used; and - (2) Need not be used with respect to the bearing surfaces of a part whose bearing factor is larger than the applicable casting factor. - (c) Critical castings. For each casting whose failure would preclude continued safe flight and landing of the rotorcraft or result in serious injury to any occupant, the following apply: - (1) Each critical casting must— - (i) Have a casting factor of not less than 1.25; and - (ii) Receive 100 percent inspection by visual, radiographic, and magnetic particle (for ferromagnetic materials) or penetrant (for nonferromagnetic materials) inspection methods or approved equivalent inspection methods. - (2) For each critical casting with a casting factor less than 1.50, three sample castings must be static tested and shown to meet— - (i) The strength requirements of §29.305 at an ultimate load corresponding to a casting factor of 1.25; and - (ii) The deformation requirements of §29.305 at a load of 1.15 times the limit load. - (d) *Noncritical castings*. For each casting other than those specified in paragraph (e) of this section, the following apply: - (1) Except as provided in paragraphs (d)(2) and (3) of this section, the casting factors and corresponding inspections must meet the following table: | Casting factor | Inspection | |--|--| | 2.0 or greater
Less than 2.0, greater than 1.5. | 100 percent visual.
100 percent visual, and magnetic
particle (ferromagnetic materials),
penetrant (nonferromagnetic ma-
terials), or approved equivalent
inspection methods. | | 1.25 through 1.50 | 100 percent visual, and magnetic
particle (ferromagnetic materials),
penetrant (nonferromagnetic ma-
terials), and radiographic or ap-
proved equivalent inspection
methods. | (2) The percentage of castings inspected by nonvisual methods may be